Nonparametric Estimation via Local Estimating Equations, with Applications to Nutrition Calibration

نویسندگان

  • R. J. Carroll
  • David Ruppert
چکیده

Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric estimators of a \parameter" depending on a predictor. The nonparametric component is estimated via local polynomials with loess or kernel weighting; asymptotic theory is derived for the latter. In keeping with the estimating equation paradigm, variances of the non-parametric function estimate are estimated using the sandwich method, in an automatic fashion, without the need typical in the literature to derive asymptotic formulae and plug-in an estimate of a density function. The same philosophy is used in estimating the bias of the nonparametric function, i.e., we use an empirical method without deriving asymptotic theory on a case-by-case basis. The methods are applied to a series of examples. The application to nutrition is called \nonparametric calibration" after the term used for studies in that eld. Other applications include local polynomial regression for generalized linear models, robust local regression, and local transformations in a latent variable model. Extensions to partially parametric models are discussed. National Cancer Institute concerning nutritional epidemiology; their suggestions are gratefully acknowledged. We also wish to acknowledge with thanks Donna Spiegelman and Walter Willett for making the Nurses' Health Trial calibration study data available to us.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Estimating Equations

Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric estimators of a \parameter" depending on a predictor. The nonparametric component is estimated via local poly...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Plug{in Semiparametric Estimating Equations

In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which does not depend on the parameter. We study the eeects of using a plug-in nonparametric estimator of th...

متن کامل

Nonparametric Imputation of Missing Values for Estimating Equation Based Inference – a Full Report

We propose a nonparametric imputation procedure for data with missing values and establish an empirical likelihood inference for parameters defined by general estimating equations. The imputation is carried out multiple times via a nonparametric estimator of the conditional distribution of the missing variable given the always observable variable. The empirical likelihood is used to construct a...

متن کامل

The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations

Stuetzle and Mittal for ordinary nonparametric kernel regression and Kauermann and Tutz for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators without the need for devices such as second derivative estimation and multiple bandwidths of di erent order We derive a similar estimator in the context of local multivariate es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996